

Jnana Bharathi Campus, Bengaluru-560 056

3rd and 4th Semester Syllabus For UG Program in Biotechnology framed under NEP- 2020

Department of Microbiology Bangalore University Bengaluru-560 056

PREAMBLE

The role of education is paramount in nation building. One of the major objectives of UGC is maintenance of standards of higher education. Over the past decades the higher education system of our country has undergone substantial structural and functional changes resulting in both quantitative and qualitative development of the beneficiaries. Such changes have gained momentum with the introduction of Choice Based Credit System (CBCS) which further expects Learning Outcome-Based curriculum to maximize the benefits of the newly designed curriculum. The Learning Outcome- Based Curriculum in Biotechnology will help the teachers of the discipline to visualize the curriculum more specifically in terms of the learning outcomes expected from the students at the end of the instructional process. The commission strives to promote the link of students with the society/industry such that majority of the students engage in socially productive activities during their period of study in the institutions and at least half of the graduate students will secure access to employment/self-employment or engage themselves in pursuit of higher education. The model curriculum envisages to cater to the developmental trends in higher education, incorporating multi- disciplinary skills, professional and soft skills such as teamwork, communication skills, leadership skills, time management skills and inculcate human values, professional ethics, and the spirit of Innovation / entrepreneurship and critical thinking among students and promote avenues for display of these talents, linking general studies with professional courses. Besides imparting disciplinary knowledge to the learners, curriculum should aim to equip the students with competencies like problem solving, analytical reasoning and moral and ethical awareness. Introduction of internship and appropriate fieldwork/case studies are embedded in the curriculum for providing wider exposure to the students and enhancing their employability.

Learning outcomes specify what exactly the graduates are expected to know after completing a program of study. The expected learning outcomes are used as reference points to help formulate graduate attributes, qualification descriptors, program learning outcomes and course learning outcomes. Keeping the above objectives of higher education in mind the Learning Outcome-Based Curriculum Framework (LOCF) for the discipline of Biotechnology has been prepared and presented here.

Contents

SN	Content					
1	Biotechnology Model Curriculum – Programme outcomes	5				
2	Contents of Biotechnology 3 rd & 4 th Semester	6				
3	Curriculum of 3 rd semester Biotechnology	7-12				
4	Curriculum of 4 th semester Biotechnology	13-17				

BANGALORE UNIVERSITY

Department of Microbiology

Jnana Bharathi Campus, Bengaluru -560 056. Phone.No.080-22961461

Dr. J. Savitha Professor and Chairman Date: 20.08.2022

Proceedings of the Board of studies (BOS)(UG)

A BOS meeting was held on 20th August, 2022 regarding finalization of Under graduate (UG) 3rd and 4th Semester Microbiology and Biotechnology syllabus of Bangalore University as per the NEP regulation.

The Chairperson welcomed all the members of the BOS (UG) and then the members were invited to discuss the syllabus of the 3rd and 4th semester Microbiology received from the Karnataka Higher Education council.

The members have gone through the syllabus critically and approved the syllabus with minor correction. The suggestions made by the all members were incorporated. The meeting ended with vote of thanks by the Chairperson.

Chairman (BOS) CHAIRMAN Department of Microbiology & Biotechnology agaipre University, JB Campus, Bangalore - 560 056.

SI No	Name	Signature Banga
1	Dr. Kavya shree R	ABSENT
2	Smt. Nalina N	-
3	Dr. Sudiptha Kumar Mohanty	Judpta u my.
4	Dr. Mohana D.C	Khy
5	Dr. Geethanjali P.A	A. i
6	Dr. Raja Naika H	ABSENT
7	Prof. C Srinivas	st.
8	Prof. J Savitha	& to

Curriculum as per KSHEC

Program Name	B.Sc. Discipline	Total Credits for the Program	Credits
Core	Biotechnology	Starting year of implementation	2021-22

Program Orthographics: At the and of the anagement the student should be able to:	
Program Outcomes : At the end of the program the student should be able to:	
(Refer to literature on outcome-based education (OBE) for details on Program Outcomes)	
PO1. Understanding concepts of Biotechnology and demonstrate interdisciplinary skills acquired in ce biology, genetics, biochemistry, microbiology, and molecular biology	11
PO2. Demonstrating the Laboratory skills in cell biology, basic and applied microbiology with a emphasis on technological aspects	ın
PO3. Competent to apply the knowledge and skills gained in the fields of Plant biotechnology, anima biotechnology and microbial technology in pharma, food, agriculture, beverages, herbal an nutraceutical industries.	
PO4. Critically analyse the environmental issues and apply the biotechnology knowledge gained for conserving the environment and resolving the problems.	or
PO5. Demonstrate comprehensive innovations and skills in the fields of biomolecules, cell and organelle molecular biology, bioprocess engineering and genetic engineering of plants, microbes, and anima with respect to applications for human welfare.	
PO6. Apply knowledge and skills of immunology, bioinformatics, computational modelling of protein drug design and simulations to test the models and aid in drug discovery.	s,
PO7. Critically analyse, interpret data, and apply tools of bioinformatics and multi omics in variou sectors of biotechnology including health and Food.	15
PO8. Demonstrate communication skills, scientific writing, data collection and interpretation abilities i all the fields of biotechnology.	in
PO9. Learning and practicing professional skills in handling microbes, animals and plants and demonstrate the ability to identify ethical issues related to recombinant DNA technology, genetic engineering, animals handling, intellectual property rights, biosafety, and biohazards.	
PO10. Exploring the biotechnological practices and demonstrating innovative thinking in addressing the current day and future challenges with respect to food, health, and environment.	ne
PO11. Thorough knowledge and application of good laboratory and good manufacturing practices i biotech industries.	in
PO12. Understanding and application of molecular biology techniques and principles in forensic an clinical biotechnology.	d
PO13. Demonstrate entrepreneurship abilities, innovative thinking, planning, and setting up small-sca enterprises or CROs.	le

Assessment:

Weightage for assessments (in percentage)

Type of Course	Formative Assessment / IA	Summative Assessment
Theory	40	60
Practical	25	25
Projects	-	-
Experiential Learning (Internships etc.)	-	-

Contents of Courses for B.Sc. Biotechnology as Major Model II A

er		ry E	al	S		Mar	ks
Semester	Course code	Course Category	Theory / Practical	Practical Practical Credits		SA	FA
	BTC: 103	DSC- 7	Theory	4	Biomolecules	60	40
3.	BTC: 103		Practical	2	Biomolecules	25	25
	BTC: 303	OE- 3	Theory	3	Nutrition and Health	60	40
	BTC: 104	DSC- 8	Theory	4	Molecular Biology	60	40
4.	BTC: 104	22200	Practical	2	Molecular Biology	25	25
	BTC: 304	OE- 4	Theory	3	Intellectual Property Rights	60	40
	Exit Option wi	th Diploma in	Biotechnolog	y (100 Cred	lits)		

Program Name	BSc Biotechnology		Semester	Third				
Course Title	itle Biomolecules							
Course No.	BTC: 103	DSC -3T	No. of Theory Credits 4					
Contact hours 56 hrs.			Duration of ESA/Exam 3 hrs.					
Formative Asses	sment Marks 40	Summative Assessment M	arks 60					

Course Pre-requisite (s):

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Acquire knowledge about types of biomolecules, structure, and their functions
- 2. Will be able to demonstrate the skills to perform bioanalytical techniques
- 3. Apply comprehensive innovations and skills of biomolecules to biotechnology field

Content	56 Hrs
Unit–I	14 Hrs.
a. Carbohydrates	
Introduction, sources, classification of carbohydrates. Structure, properties and function of	
carbohydrates. Monosaccharides – Isomerism and ring structure, Sugar derivatives	
Oligosaccharides – Sucrose and Fructose	
Polysaccharides - Classification as homo and heteropolysaccharides, Homopolysaccharides -	
storage polysaccharides (starch and glycogen- structure, reaction, properties), structural	
polysaccharides (cellulose and chitin-structure, properties), Heteropolysaccharides -	
glycoproteins and proteoglycans.	
b. Amino Acids, Peptides and Proteins	
Introduction, classification and structure of amino acids. Concept of – Zwitterion, isoelectric point, pK values. Essential and nonessential amino acids. Peptide and peptide bond, classification	
of proteins based on structure and function, Structural organization of proteins	
[primary, secondary, tertiary and quaternary]. Fibrous and globular proteins, Denaturation	
and renaturation of proteins secondary (α , β), tertiary.	
Unit -II	14 Hrs
a. Lipids	
Classification and function of lipids, properties (saponification value, acid value, iodine number,	
rancidity), Hydrogenation of fats and oils, saturated and unsaturated fatty acids. General structure	
and biological functions of - phospholipids, sphingolipids, glycolipids, lipoproteins,	
prostaglandins and cholesterol.	
b. Enzymes	
Introduction, nomenclature and classification, enzyme kinetics, factors influencing enzyme	
activity, metalloenzymes, activation energy and transition state, enzyme activity, specific activity.	
Coenzymes and their functions (one reaction involving FMN, FAD, NAD). Enzyme inhibition-	
Irreversible and reversible (competitive, non-competitive and uncompetitive inhibition with an	
example each) Zymogens (trypsinogen, chymotrypsinogen and pepsinogen),	
Isozymes (LDH).	

Unit -III	14 Hrs
a. Vitamins	
Water and fat soluble vitamins, dietary source and biological role of vitamins Def	iciency
manifestation of vitamin A, B, C, D, E and K	
b. Nucleic acids	
Structures of purines and pyrimidines, nucleosides, nucleotides in DNA	
c. Hormones	
Classification of hormones based on chemical nature and mechanism of action. Ch	nemical
structure and functions of the following hormones: Glucagon, Cortisone, Epine	phrine,
Testosterone and Estradiol.	
Unit -IV	14 Hrs
Bioanalytical tools:	
a. Chromatography: Principle, procedure and applications of - paper chromatography thin layer chromatography.	phy and
b. Electrophoresis: Principle, procedure and applications of electrophoresis -PAGE, SDS- PAGE & agarose gel electrophoresis).	horesis
c. Spectroscopy: UV-Vis spectrophotometry; mass and atomic absorption spectroscopy.	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

		Program Outcomes (POs)										
Course Outcomes (COs) / Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12
Acquire knowledge about types of biomolecules, structure, and their functions	~				~							~
Will be able to demonstrate the skills to perform bioanalytical techniques			~								~	~
Apply comprehensive innovations and skills of biomolecules to biotechnology field	~				~							~

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Summative Assessment = 60 Marks							
Formative Assessment Occasion / type	Weightage in Marks						
Attendance	10						
Seminar and Assignment	10						
Debates and Quiz	10						
Test	10						
Total	60 marks + 40 marks = 100 marks						

Course Title		Biomolecules (Prac	tical)	Practical Credits	2						
Course No. BTC:103 DSC-3P		Contact hours	4hrs/week								
	Content										
1.	Calculat	ions of Molarity, Mola	ality, Normality, perce	nt by mass % (w/w),	Percent by volume (%						
	v/v), par	ts per million (ppm), pa	arts per billion (ppb)								
2.	Preparat	ion of standard solution	1 S.								
3.	Preparat	ion of buffers – Acetate	e, phosphate, Tris								
4.	Estimati	on of reducing sugar by	DNS method								
5.	Determi	nation of α -amylase act	ivity by DNS method								
6.	Estimati	on of proteins by Lowr	y's/Biuret/ Bradford's	method							
7.	Estimati	on of amino acid by Ni	nhydrin method								
8.	Extraction	on of protein from soak	ed/sprouted green gran	n by salting out method	ļ						
9.	Separati	on of plant pigments by	paper chromatography	ý							
10.											
11.	Demons	tration of active proteir	by Native PAGE								
12.	Determi	nation of Saponification	n and iodine number of	lipids							

Practical assessment

Assessment					
Formative asse	Formative assessment				
Assessment Occasion / type	Occasion / type Weightage in Marks Practical Ex				
Record	5				
Test	10	25			
Attendance	5	- 25	50		
Performance	5				
Total	25	25			

- 1 David Plummer; 2001. 3rd Edition. An Introduction to Practical Biochemistry, Tata McGraw Hill Edu.Pvt.Ltd. New Delhi, India
- 2 Sadashivam, S.Manickam, A.1995. Biochemical Methods, 1st Edition, New Age International Publishers, India
- 3 Sawhney, S. K. & Randhir Singh. Introductory Practical biochemistry, (ed) Narosa Publishing. House, New Delhi, ISBN 81-7319-302-9
- 4 Beedu Sasidhar Rao & Vijay Despande. Experimental Biochemistry: A Student Companion, (ed) I.K.International Pvt. LTD, New Delhi. ISBN 81-88237-41-8
- 5 Thimmaiah, S. K. (ed), Kalyani Publishers, Standard Methods of Biochemical Analysis, Ludhiana ISBN 81-7663-067

Program Name	BSc Biotechnology		Semester	Third			
Course Title	Nutrition and H	Nutrition and Health					
Course Code	BTC:303	OE-3 No. of Theory Credits					
Contact hours	Lecture	42 hrs.Duration of ESA/Exam2 He					
Contact nours	Practical	-					
Formative Asses	ssment Marks	40 Summative Assessment Marks 6					

Course Pre-requisite(s): Course Outcomes (COs): At the end of the course the student should be able to: Study the concepts of food, nutrition, diet and health Acquire knowledge on various sources of nutrients and good cooking practices Content Unit–I Introduction Concepts of nutrition and health. Definition of Food, Diet and nutrition, Food groups. Food pyramids. Functions of food. Balanced diet. Meal planning. Eat right concept. Functional foods, Probiotics, Prebiotics, and antioxidants. Unit -II

Nutrients	
Macro and Micronutrients - Sources, functions and deficiency. Carbohydrates, Proteins, Fats -	
Sources and calories. Minerals – Calcium, Iron, Iodine.	
Vitamins – Fat soluble vitamins –A, D, E & K. Water soluble vitamins – Vitamin C, Thiamine,	
Riboflavin, Niacin. Water–Functions and water balance. Fibre –Functions and sources.	
Recommended Dietary Allowance, Body Mass Index and Basal Metabolic Rate.	
Unit -III -	14 Hrs
Nutrition and Health	
Methods of cooking affecting nutritional value. Advantages and disadvantages. Boiling,	
steaming, pressure cooking. Oil/Fat - Shallow frying, deep frying. Baking. Nutrition and	
lifestyle Nutritional requirement, dietary guidelines: Adulthood, Pregnancy, Lactation, Infancy-	

steaming, pressure cooking. Oil/Fat – Shallow frying, deep frying. Baking. Nutrition and lifestyle. Nutritional requirement, dietary guidelines: Adulthood, Pregnancy, Lactation, Infancy-Complementary feeding, Pre-school, Adolescence, geriatric. Nutrition related metabolic disorders- diabetes and cardiovascular disease.

42 Hrs

14 Hrs

14 Hrs

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Summative Assessment = 60 Marks					
Formative Assessment Occasion / type	Weightage in Marks				
Attendance	10				
Seminar and Assignment	10				
Debates and Quiz	10				
Test	10				
Total	60 marks + 40 marks = 100 marks				

- 1 Sri Lakshmi B, (2007), Dietetics. New Age International publishers. New Delhi
- 2 Sri Lakshmi B, (2002), Nutrition Science. New Age International publishers. New Delhi
- 3 Swaminathan M. (2002), Advanced text book on food and Nutrition. Volume I. Bappco
- 4 Gopalan.C., Rama Sastry B.V., and S.C.Balasubramanian (2009), Nutritive value of Indian Foods. NIN.ICMR. Hyderabad.
- 5 Mudambi S R and Rajagopal M V, (2008), Fundamentals of Foods, Nutrition & diet therapy by New Age International Publishers, New Delhi

Program Name	BSc Biotechnolog	y	Semester	Fourth
Course Title	Molecular Biology	7		
Course No.	BTC: 104	DSC-4T	No. of Theory Credits	4
Contact hours	56 hrs.		Duration of ESA/Exam	3 Hours
Formative Assessment Marks40			Summative Assessment M	arks 60

Course Pre-requisite (s):

Course Outcomes (COs): At the end of the course the student should be able to:

1. Study the advancements in molecular biology with latest trends.

2. Will acquire the knowledge of structure, functional relationship of proteins and nucleic acids.

3. Aware about the basic cellular processes such as transcription, translation, DNA replication and repair mechanisms.

Content	56 Hrs
Unit–I	30 Hrs
Molecular basis of life - Nucleic Acids	14 HIS
An introduction to DNA and RNA, experimental proof of DNA as genetic material, Structure	
and functions of DNA and RNA, Watson and Crick model of DNA and forms of DNA (A and Z).	
Ribozymes.	
Unit -II	14 Hrs
DNA Replication and Repair	
Replication of DNA in prokaryotes and eukaryote. Enzymes and proteins involved in replication,	
Theta model, linear and rolling circle model. DNA Polymerases.	
Replication complex: Pre-priming proteins, primosome, replisome, unique aspects of eukaryotic	
chromosome replication, fidelity of replication, DNA damage and repair mechanism: photo	
reactivation, excision repair, mismatch repair and SOS repair.	
Unit -III	14 Hrs
Transcription and RNA processing	
Central dogma, types of RNA, Transcription in prokaryotes, RNA polymerase, role of sigma	
factor, promoter, Initiation, elongation and termination of RNA chains.	
Transcription in eukaryotes: Eukaryotic RNA polymerases, transcription factors, promoters,	
enhancers, mechanism of transcription initiation, promoter clearance and elongation RNA	
splicing and processing: processing of pre-mRNA: 5' cap formation, polyadenylation, splicing,	
rRNA and tRNA splicing.	
Unit –IV	14 Hrs
Regulation of gene expression and translation	
Genetic code and its characteristics, Wobble hypothesis. Translation in prokaryotes and	
eukaryotes, ribosome, enzymes and factors involved in translation. Mechanism of translation-	
activation of amino acid, aminoacyl tRNA synthesis, Mechanism- initiation, elongation and	
termination of polypeptide chain. Fidelity of translation, Inhibitors of translation. Protein folding	
and modifications, Post translational modifications of proteins.	
Operon concept Lac and Trp.	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

		Program Outcomes (POs)										
Course Outcomes (COs) / Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12
Study the advancements in molecular biology with latest trends	~				~							~
Will acquire the knowledge of structure, functional relationship of proteins and nucleic acids					~	~						~
Awareness on the basic cellular processes such as transcription, translation, DNA replication and repair mechanisms	~				~				~			~

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Summative Assessment = 60 Marks					
Formative Assessment Occasion / type	Weightage in Marks				
Attendance	10				
Seminar and Assignment	10				
Debates and Quiz	10				
Test	10				
Total	60 marks + 40 marks = 100 marks				

Course Title	Molecular Biology	(Practical)	Practical Credits	2		
Course No.	BTC:104	C:104 DSC-4P Contact hours		4hrs/week		
		Content				
1. Isolation	of DNA from yeast/pla	nt/animal sources				
2. Estimatio	n of DNA by DPA met	hod				
3. Analysis	of DNA by Agarose ge	l electrophoresis				
4. Estimatio	n of RNA by Orcinol n	nethod				
5. Extraction precipi	1	bial/plant and partial p	urification by Ammoniu	ım sulphate		
6. Extraction	n and partial purificatio	n of protein from anim	al source by organic sol	vents.		
7. Protein se	eparation by SDS-Polya	crylamide Gel Electro	phoresis (PAGE)			
8. Study of	8. Study of Conjugation, Transformation and Transduction,					
9. DNA rep	lication model					
10. Types of	RNA (Model)					
11. Preparation	1. Preparation of forms of DNA model					
12 Domonat	notion of Douling alotin					

12. Demonstration of Replica plating technique

Practical assessment

	Assessment					
Formative asse	Formative assessment					
Assessment Occasion / type	Weightage in Marks	Practical Exam	Total Marks			
Record	5					
Test	10					
Attendance	5	25	50			
Performance	5					
Total	25	25				

- 1 Glick, B.R and Pasternak, J.J 1998. Molecular biotechnology, Principles and application of recombinant DNA, Washington D.C. ASM press
- 2 Howe. C. 1995. Gene cloning and manipulation, Cambridge University Press, USA
- 3 Lewin, B. Gene VI New York, Oxford University Press
- 4 Rigby, P.W.J. 1987 Genetic Engineering Academic Press Inc. Florida, USA
- 5 Sambrook et al 2000. Molecular cloning Volumes I, II & III, Cold spring Harbor Laboratory Press New York, USA
- Walker, J. M. and Ging old, E.B. 1983. Molecular Biology & Biotechnology (Indian Edition) Royal Society of Chemistry U.K
- 7 Karp. G 2002. Cell & Molecular Biology, 3rd Edition, John Wiley & Sons, Inc.

Program Name	BSc Biotechnology		Semester	Fourth			
Course Title	Intellectual Prop	Intellectual Property Rights					
Course Code	BTC:304	OE-4	No. of Theory Credits 3				
Contact hours	Lecture	42 hrs.	Duration of ESA/Exam 2 Hour				
Contact nours	Practical	-					
Formative Asses	ssment Marks	Iarks40Summative Assessment Marks					

Course Pre-requisite(s): Semester I and II of composite Home Science. Course Outcomes (COs): At the end of the course the student should be able to: 1. Knowledge about need and scope of Intellectual property rights 2. Acquire knowledge about filing patents, process, and infringement 3. Knowledge about trademarks, industrial designs, and copyright Content **42 Hrs** Unit–I 14 Hrs Introduction to Intellectual property rights (IPR): Genesis and scope. Types of Intellectual property rights - Patent, Trademarks, Copyright, Design, Trade secret, Geographical indicators, Plant variety protection. National and International agencies - WIPO, World Trade Organization (WTO), Trade-Related Aspects of Intellectual Property Rights (TRIPS), General Agreement on Tariffs and Trade (GATT). Unit -II 14 Hrs Patenting, process, and infringement Basics of patents - Types of patents; Patentable and Non-Patentable inventions, Process and Product patent. Indian Patent Act 1970; Recent amendments; Patent Cooperation Treaty (PCT) and implications. Process of patenting. Types of patent applications: Provisional and complete specifications; Concept of "prior art", patent databases (USPTO, EPO, India). Financial assistance, schemes, and grants for patenting. Patent infringement- Case studies on patents (Basmati rice, Turmeric, Neem) Unit -III -14 Hrs Trademarks, Copy right, industrial Designs Trademarks- types, Purpose and function of trademarks, trademark registration, Protection of

trademarks- types, Purpose and function of trademarks, trademark registration, Protection of trademark. Copy right- Fundamentals of copyright law, Originality of material, rights of reproduction, industrial Designs: Protection, Kind of protection provided by industrial design.

Pedagogy

Summative assessment = 40 marks theory paper, End semester Exam duration of exam 2 hours				
Formative Assessment Occasion / type Weightage in Marks				
Assignment	10			

Seminar	10
Case studies	10
Test	10
Total	40 marks

- 1 Manish Arora. 2007. Universal's Guide to Patents Law (English) 4th Edition) -Publisher: Universal Law Publishing House
- 2 Kalyan C. Kankanala. 2012. Fundamentals of Intellectual Property. Asia Law House
- 3 Ganguli, P. 2001. Intellectual Property Rights: Unleashing the knowledge economy. New Delhi: Tata McGraw-Hill Pub
- 4 World trade organization <u>http://www.wto.org</u>
- 5 World Intellectual Property organization <u>www.wipo.int</u> Office of the controller general of Patents, Design & Trademarks - <u>www.ipindia.nic.in</u>