

Jnana Bharathi Campus, Bengaluru-560 056

3rd and 4th Semester Syllabus For UG Program in Microbiology framed under NEP- 2020

Department of Microbiology Bangalore University Bengaluru-560 056

PREAMBLE

The role of education is paramount in nation building. One of the major objectives of UGC is maintenance of standards of higher education. Over the past decades the higher education system of our country has undergone substantial structural and functional changes resulting in both quantitative and qualitative development of the beneficiaries. Such changes have gained momentum with the introduction of Choice Based Credit System (CBCS) which further expects Learning Outcome-Based curriculum to maximize the benefits of the newly designed curriculum. The Learning Outcome- Based Curriculum in Microbiology will help the teachers of the discipline to visualize the curriculum more specifically in terms of the learning outcomes expected from the students at the end of the instructional process. The commission strives to promote the link of students with the society/industry such that majority of the students engage in socially productive activities during their period of study in the institutions and at least half of the graduate students will secure access to employment/self-employment or engage themselves in pursuit of higher education. The model curriculum envisages to cater to the developmental trends in higher education, incorporating multi- disciplinary skills, professional and soft skills such as teamwork, communication skills, leadership skills, time management skills and inculcate human values, professional ethics, and the spirit of Innovation / entrepreneurship and critical thinking among students and promote avenues for display of these talents, linking general studies with professional courses. Besides imparting disciplinary knowledge to the learners, curriculum should aim to equip the students with competencies like problem solving, analytical reasoning and moral and ethical awareness. Introduction of internship and appropriate fieldwork/case studies are embedded in the curriculum for providing wider exposure to the students and enhancing their employability.

Learning outcomes specify what exactly the graduates are expected to know after completing a Programme of study. The expected learning outcomes are used as reference points to help formulate graduate attributes, qualification descriptors, Programme learning outcomes and course learning outcomes. Keeping the above objectives of higher education in mind the Learning Outcome-Based Curriculum Framework (LOCF) for the discipline of Microbiology has been prepared and presented here.

Contents

SN	Content					
1	Microbiology Model Curriculum – Programme outcomes	5				
2	Contents of Microbiology 3 rd & 4 th Semester	6				
3	Curriculum of 3 rd semester Microbiology	7-12				
4	Curriculum of 4 th semester Microbiology	13-17				

BANGALORE UNIVERSITY

Department of Microbiology

Jnana Bharathi Campus, Bengaluru -560 056. Phone.No.080-22961461

Dr. J. Savitha Professor and Chairman

Date: 20.08.2022

Proceedings of the Board of studies (BOS)(UG)

A BOS meeting was held on 20th August, 2022 regarding finalization of Under graduate (UG) 3rd and 4th Semester Microbiology and Biotechnology syllabus of Bangalore University as per the NEP regulation.

The Chairperson welcomed all the members of the BOS (UG) and then the members were invited to discuss the syllabus of the 3rd and 4th semester Microbiology received from the Karnataka Higher Education council.

The members have gone through the syllabus critically and approved the syllabus with minor correction. The suggestions made by the all members were incorporated. The meeting ended with vote of thanks by the Chairperson.

	D	Chairman (BOS) CHAIRMAN Department of Microbiology & Biotechnology
	Signature	angelpre University, JB Campus Bangalore - 560 056.
	ABSENT	
	1	
y	Sudpta u my	•
	Khy	
	() · 1	

SI No	Name	Signature
1	Dr. Kavya shree R	ABSENT
2	Smt. Nalina N	-
3	Dr. Sudiptha Kumar Mohanty	Sudpta u my.
4	Dr. Mohana D.C	Khz
5	Dr. Geethanjali P.A	A.L
6	Dr. Raja Naika H	ABSENT
7	Prof. C Srinivas	Sat.
8	Prof. J Savitha	Sotte

Curriculum as per KSHEC

Program Name	B.Sc. Discipline	Total Credits for the Program	Credits
Core	Microbiology	Starting year of implementation	2021-22

Program Outcomes: At the end of the program the student should be able to: (Refer to literature on outcome-based education (OBE) for details on Program Outcomes) PO1. Knowledge and understanding of concepts of microbiology and its application in pharma, food, agriculture, beverages, nutraceutical industries. PO2. Understand the distribution, morphology and physiology of microorganisms and demonstrate the skills in aseptic handling of microbes including isolation, identification and maintenance PO3. Competent to apply the knowledge gained for conserving the environment and resolving the environmental related issues. PO4. Learning and practicing professional skills in handling microbes and contaminants in laboratories and production sectors. Exploring the microbial world and analysing the specific benefits and challenges. PO5. PO6. Applying the knowledge acquired to undertake studies and identify specific remedial measures for the challenges in health, agriculture, and food sectors. PO7. Thorough knowledge and application of good laboratory and good manufacturing practices in microbial quality control. PO8. Understanding biochemical and physiological aspects of microbes and developing broader perspective to identify innovative solutions for present and future challenges posed by microbes. PO9. Understanding and application of microbial principles in forensic and working knowledge about clinical microbiology. PO10. Demonstrate the ability to identify ethical issues related to recombinant DNA technology, GMOs, intellectual property rights, biosafety and biohazards. PO11. Demonstrate the ability to identify key questions in microbiological research, optimize research methods, and analyse outcomes by adopting scientific methods, thereby improving the employability. PO12. Enhance and demonstrate analytical skills and apply basic computational and statistical techniques in the field of microbiology.

Assessment:

Weightage for assessments (in percentage)

Type of Course	Formative Assessment / IA	Summative Assessment
Theory	40	60
Practical	25	25
Projects	-	-
Experiential Learning (Internships etc.)	-	-

Contents of Courses for B.Sc. Microbiology as Major

Model II A

er		e ry	al	SS		Mar	ks
Semester	Course code	Course Category	Theory / Practical	Credits	Paper Title	S.A	I.A
		DSC- 3	Theory	4	Microbial Diversity	60	40
3.			Practical	2	Microbial Diversity	25	25
		OE- 3	Theory	3	Microbial Entrepreneurship	60	40
		DSC- 4	Theory	4	Microbial Enzymology and Metabolism	60	40
4.			Practical	2	Microbial Enzymology and Metabolism	25	25
		OE- 4	Theory	3	Human Microbiome	60	40
	Exit Option wi	th Diploma in	Microbiology	y (100 Credi	its)		

Program Name	BSc Microbio	ology		Semester	Third		
Course Title	Microbial Di	Microbial Diversity					
Course No.	MBL-103 DSC -3T			No. of Theory Credits	4		
Contact hours	56 hrs.			Duration of ESA/Exam	3 Hours		
Formative Asses	sment Marks	40		Summative Assessment M	arks 60		

Course Pre-requisite (s):.	
 Course Outcomes (COs): At the end of the course the student should be able to: 1. Acquire knowledge about microbes and their diversity 2. Study the characteristics, classification and economic importance of Prokaryotic and Eukaryo microorganisms. 3. Gain knowledge about viruses and their diversity 	tic
Content	56 Hrs
Unit–I	08 Hrs
Biodiversity and Microbial Diversity Concept, definition and levels of biodiversity; Biosystematics – Major classification systems- Numerical and Chemotaxonomy. Study and measures of microbial diversity; Conservation and Economic values of microbial diversity.	
Unit -II	16 Hrs
Diversity of Prokaryotic Microorganisms Distribution, factors regulating distribution. An overview of Bergey's Manual of Systematic Bacteriology. General characteristics; Classification; Economic importance of: Archaea: Thermus aquaticus, Methanogens Bacteria: Escherichia coli, Bacillus subtilis, Cyanobacteria: Microcystis, Spirulina Actinomycetes: Streptomyces, Nocardia, Frankia Rickettsiae: Rickettsia rickettsi Chlamydiae: Chlamydia trachomatis Spirochaetes: Trepanema pallidum, Mycoplasma	16 Hrs
Unit -III	10 Hrs
 Diversity of Eukaryotic Microorganism General characters; Classification- Economicimportance Fungi: Ainsworth classification- detailed study up to the level of classes, Salient features and reproduction. Type study: <i>Rhizopus, Saccharomyces, Aspergillus, Agaricus, Fusarium</i> Algae: Occurrence, distribution, and symbiotic association- Lichen; thallus organization and types. Type study: <i>Chlorella, Diatom, Gracilaria,</i> 	

Protozoa: Classification up to the level of classes. Type study: *Euglena, Trichomonas, Plasmodium, Trypanosoma*

Unit -IV	16 Hrs
Diversity of Viruses	
General structure, Isolation, purification and culturing of viruses. Principles of Viral	
Taxonomy- Baltimore and ICTV and the recent trends.	
Capsid symmetry- Icosahedral, helical, complex	
Animal: HIV, Corona, Ortho and Paramyxovirus, Oncogenic virus	
Plants: TMV, Papaya virus	
Microbial: T4, lambda, cyano and myco phages.	
Sub viral particles. Viroids and Prions.	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

	Program Outcomes (POs))			
Course Outcomes (COs) / Program Outcomes (POs)		2	3	4	5	6	7	8	9	10	11	12
Knowledge about microbes and their diversity		~			~			~				
Study, characters, classification and economic importance of Pro-eukaryotic and Eukaryotic microbes	;	•	~		 ✓ 							
Knowledge about viruses and their diversity		✓				~				~		
Pedagogy: Lectures, Seminars, Industry Visits, Debates	s, Qu	iz an	d As	signm	ents	I	I	I				
Summative Assessment = 60 Marks												
Formative Assessment Occasion / type				Wei	ghta	ge ir	n Ma	rks				
Attendance						10						
Seminar and Assignment	10											
Debates and Quiz			10									
Test	st 10											
Total	60 ma	rks +	- 40 r	narks	= 10	0 m	arks					

Course Title	Microbial Divers	sity (Practical)	Practical Credits	2						
Course No.	MBL-103	DSC-4P	Contact hours	4 hrs/week						
		Content								
1. Isolation and identification of bacteria from soil, air and water										
2. Isolation,										
3. Isolation,	and identification o	f Cyanobacteria								
4. Isolation,	and identification o	f Actinomycetes								
5. Study of	morphology of bacte	eria - cocci, bacilli, vibri	io and spiral							
6. Measurer	nent of microbial ce	ll size by Micrometry,								
7. Spore cou	unt by haemocytome	eter								
8. Type stuc	ly: Cyanobacteria N	ostoc, Microcystis Spiru	ılina							
		, Diatoms, Gracilaria								
10. Type stuc	ly: Fungi; Rhizopus,	Saccharomyces, Agaria	cus							
		ıa,Plasmodium, Trypan								
12. Study of	micrographs /model	s - HIV, TMV, Corona	virus							
Practical assess	sment									
		Assessment								
	Formative assess	ment	Summative Assessme							
Assessment O	ccasion / type	Weightage in Marks	Practical Exam	Total Marks						
Record		5								
Test 10										
Attendance		5	25							
Performance	Performance 5									
Total		25	25							

References

- 1 Black, J.G. 2002. Microbiology-Principles and Explorations. John Wiley and Sons, Inc. New York
- 2 Brock, T.D. and Madigan, M.T. 1988. Biology of Microorganisms, V Edition. Prentice Hall. New Jersey
- 3 Dimmock, N. J., Easton, A. J., and Leppard, K. N. 2001. Introduction to Modern Virology. 5th edition.Blackwell Publishing, USA
- 4 Flint, S.J., Enquist, L.W., Drug, R.M., Racaniello, V.R. and Skalka, A.M. 2000. Principles of Virology- Molecular Biology, Pathogenesis and Control. ASM Press, Washington, D.C
- 5 Prescott, Harley, Klein's Microbiology, J.M. Willey, L.M. Sherwood, C.J. Woolverton, 2008. 7th International, edition ,McGraw Hill
- 6 Vashishta, B.R, Sinha A.K and Singh V. P. 2005. Botany Fungi, S. Chand and Company Limited, New Delhi
- 7 Kotpal, R.L Protozoa 5th Edition 2008. Rastogi Publications, Meerut, New Delhi.
- 8 Madigan, M.T. Martinko, J.M, Dunlap, P. V. Clark, D. P. 2009. Brock Biology of Microorganisms, 12thedition, Pearson Benjamin Cummings
- 9 G. J. Tortora, B. R. Funke, C. L. 2008. Microbiology An Introduction, Case, 10th edition., Pearson Education, UK.
- 10 Stanier, 1987, Ingraham et al, General Microbiology, 4th and 5th edition Macmillan education limited

- 11 Pelczar Jr. Chan, Krieg, Microbiology- Concepts and Applications, International edition, McGraw Hill
- 12 Alexopoulos, C.J., Mims, C.W. and Blackwell, M. 2002. Introductory Mycology. John Wiley and Sons (Asia) Pvt. Ltd. Singapore. 869 pp, 4th edition.
- 13 Vashishta, B.R Sinha A.K and Singh V. P. 2005. Botany Algae S. Chand and Company Limited, New Delhi
- 14 Dubey R. C., and Maheshwari, D. K. 1999. A Textbook of Microbiology, 1st edition, S. Chand & Company Ltd, New Delhi
- 15 K. P. Talaro, 2009. Foundations in Microbiology, 7th International edition, McGraw Hill

Program Name	BSc Microbiolog	<u>sy</u>	Semester	Third				
Course Title	Microbial Entre	Microbial Entrepreneurship						
Course Code	MBL:303	OE-3	No. of Theory Credits	3				
Contact hours		42 Hrs	Duration of ESA/Exam	2 Hours				
Contact nours	Practical		-					
Formative Asses	ssment Marks	40	40 Summative Assessment Marks					

Course Pre-requisite(s): Course Outcomes (COs): At the end of the course the student should be able to: 1. Demonstrate entrepreneurial skills 2. Acquire knowledge on Industrial entrepreneurship 3. Acquire knowledge on Healthcare Entrepreneurship Content **42 Hrs** Unit–I 14 Hrs **General Entrepreneurship** Entrepreneurship and microbial entrepreneurship - Introduction and scope, Business development, product marketing, HRD, Biosafety and Bioethics, IPR and patenting, Government organization/ Institutions/ schemes, Opportunities and challenges. Unit -II 14 Hrs **Industrial Entrepreneurship** Microbiological Industries - Types, processes and products, Dairy products, Fermented foods, Bakery and Confectionery, Alcoholic products and Beverages, Enzymes - Industrial production and applications. Biofertilizers and Biopesticides, SCP and SCO. Neutraceutical products. **Unit -III** 14 Hrs Healthcare Entrepreneurship Production and applications: Sanitizers, Antiseptic solutions, Polyphenols (Flavonoids), Alkaloids, Cosmetics, Biopigments and Bioplastics, Vaccines, Diagnostic tools and kits.

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Summative Assessment = 60 Marks					
Formative Assessment Occasion / type	Weightage in Marks				
Attendance	10				
Seminar	10				
Debates and Quiz	10				
Test	10				
Total	60 marks + 40 marks = 100 marks				

References

- 1 Srilakshmi, B. (2007). Dietetics. New Age International publishers. New Delhi
- 2 Srilakshmi, B. (2002). Nutrition Science. New Age International publishers. New Delhi
- 3 Swaminathan, M. (2002). Advanced text book on food and Nutrition. Volume I. Bappco
- 4 Gopalan, C. RamaSastry, B.V. and Balasubramanian, S.C (2009). Nutritive value of Indian Foods. NIN.ICMR.Hyderabad.
- 5 Mudambi S R and Rajagopal M V.2008. Fundamentals of Foods, Nutrition & diet therapy by New Age International Publishers, New Delhi. 5th edition.

Program Name	BSc Microbio	logy		Semester	Fou	rth
Course Title	Microbial Enzymology and Metabolism					
Course No.	MBL:104		DSC -4T	No. of Theory Credits		4
Contact hours	ct hours 56 hrs.		Duration of ESA/Exam 3 H		lours	
Formative Asses	ssment Marks	40		Summative Assessment Marks		60

Course Pre-requisite (s):

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Differentiating concepts of chemoheterotrophic metabolism and chemolithotrophic metabolism.
- 2. Describing the enzyme kinetics, enzyme activity and regulation.
- 3. Differentiating concepts of aerobic and anaerobic respiration and how these are manifested in the form of different metabolic pathways in microorganisms

Content	56 Hrs
Unit–I	14 Hrs
Metabolism of Carbohydrates	
Concept of aerobic respiration, anaerobic respiration and fermentation. Sugar degradation	1
pathways i.e. EMP, ED, Pentose phosphate pathway, Phosphoketolase pathway. TCA cycle.	1
Fermentation - Fermentation balance, concept of linear and branched fermentation pathways.	1
Fermentation pathways: Alcohol fermentation and Pasteur effect; Butyric acid and Butanol-	1
Acetone Fermentation, Mixed acid and 2,3-butanediol fermentation, Propionic acid	1
Fermentation, acetate fermentation.	1
Chemolithotrophic metabolism: Chemolithotrophy -Oxidation of Hydrogen, Sulphur, Iron and	1
Nitrogen.	1
Anaerobic respiration with special reference to dissimilatory nitrate reduction and sulphate	1
reduction.	l
Unit -II	14 Hrs
Metabolism of aminoacids, nucleotides and lipids	
1.Nitrogen Metabolism	1
Introduction to biological Nitrogen fixation, Ammonia assimilation. Assimilatory nitrate	1
reduction, dissimilatory nitrate reduction, denitrification	1
2. Biosynthesis of ribonucleotides and deoxyribonucleotides	1
The de novo pathway of purines and pyrimidines, recycling by salvage pathway	I
3. Amino acid degradation and biosynthesis: Deamination and decarboxylation- An	1
overview of aminoacids biosynthesis	1
4. Lipid degradation and biosynthesis: β-oxidation of palmitic acid; Biosynthesis of palmitic	1
acid.	1
5. Metabolism of one carbon compounds: Acetogens: Autotrophic pathway of acetate	1
synthesis	1
6. Metabolism of two-carbon compounds: Acetate: Acetic acid bacteria: Ethanol oxidation,	1
sugar alcohol oxidation. Glyoxylate and glycolate metabolism: i. Dicarboxylic acid cycle, ii.	1
Glycerate pathway iii. Beta hydroxyaspartate pathway	1
Oxalate as carbon and energy source	

Unit -III	14 Hrs
Basics of Enzymes	
Introduction to enzymes–Definition, enzyme unit, specific activity and turnover number, exo/ endoenzymes, constitutive/ induced enzymes, isozymes. Monomeric, Oligomeric and	
Multimeric enzymes.	
Multienzyme complex: pyruvate dehydrogenase; isozyme: lactate dehydrogenase. Ribozymes, abzymes	
Structure of enzyme : Apoenzyme and cofactors, prosthetic group-TPP, coenzyme, NAD, metal cofactors.	
Classification of enzymes, Mechanism of action of enzymes: active site, transition state	
complex and activation energy. Lock and key hypothesis and Induced Fit hypothesis.	
Multisubstrate reactions -Ordered, Random and Ping-pong.	
Unit -IV	14 Hrs
Enzyme Kinetics and Regulation	
Enzyme Kinetics: Kinetics of one substrate reactions. i. Equilibrium assumptions ii. Steady state assumptions iii. Line weaver-Burk, Hanes-Woolf, Eadie-Hofstee equations and plots. Kinetics of enzyme inhibition. Competitive, non-competitive and uncompetitive inhibition. Effect of changes in pH and temperature on enzyme catalyzed reaction. Kinetics of two substrate reactions. Pre steady state kinetics. Kinetics of immobilized enzymes	
Enzyme regulation: Allosteric enzyme - general properties, Hill equation, Koshland Nemethy and Filmer model, Monod Wyman and Changeux model. Covalent modification by various mechanisms. Regulation by proteolytic cleavage - blood coagulation cascade. Regulation of multi-enzyme complex- Pyruvate dehydrogenase. Feedback inhibition.	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes (POs)		Program Outcomes (POs)										
	1	2	3	4	5	6	7	8	9	10	11	12
Differentiating concepts of chemoheterotrophic metabolism and chemolithotrophic metabolism		•						•			✓	
Describing the enzyme kinetics, enzyme activity and regulation.		✓						~			~	
Differentiating concepts of aerobic and anaerobic respiration and how these are manifested in the form of different metabolic pathways in microorganisms		✓						•			✓	

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Formative Assessment Occasion / type	Weightage in Marks			
Attendance	10			
Seminar and Assignment	10			
Debates and Quiz	10			
Test	10			
Total	60 marks + 40 marks = 100 marks			

Cours	e Title	Microbial Enzy (Practical)	mology and Metabolism	Practical Credits	2		
Cours	se No.	MBL:104	DSC-4P	Contact hours	4hrs/week		
			Content				
1.	Estimati	on of total lipid					
2.	Identific	ation of fatty acids	and other lipids by TLC				
3. Isolation of lactose from bovine milk							
4.	Estimati	on of total sugars b	by the phenol-sulphuric acid	d method			
5.	Estimati	on of DNA - DPA	method & UV absorbance	method			
6.	Estimati	on of RNA (Orcine	ol method)				
7.			sorption coefficient (ϵ) of l-	•			
8.			tannins by Folin- Denis me	ethod			
9.		tration of alcoholic					
10.			me activity (amylase): a. T	Temperature b. pH c. si	ibstrate concentration		
	•	me concentration					
11.			Vmax of amylase (Linewe	eaver-Burke plot; Mich	aelis-Menton		
	equation						
12.	Identific						
		ation of metabolic	pathways through charts (A	any 3)			
Drac	tical as		pathways through charts (A	any 3)			
Prac	ctical ass	ation of metabolic	pathways through charts (A	any 3)			
Prac	ctical ass		Assessment	Any 3) Summative Assessme			
		sessment	Assessment		ent Total Marks		
	essment (sessment Formative asse	Assessment	Summative Assessme			
Ass	essment (sessment Formative asse	Assessment Soment Weightage in Marks	Summative Assessme Practical Exam			
Ass Rec Test	essment (sessment Formative asse	Assessment Sessment Weightage in Marks 5	Summative Assessme			
Ass Rec Test Atte	essment (ord t	sessment Formative asse	Assessment ssment Weightage in Marks 5 10	Summative Assessme Practical Exam	Total Marks		

References

- 1. Philipp. G. Manual of Methods for General Bacteriology.
- 2. David T. Plummer. An Introduction to Practical Biochemistry
- Wood W. B. Wilson J.H., Benbow R.M. and Hood L.E. 1981. Biochemistry- A Problem Approach, 2nd edition. The Benjamin/ Cummings Pub.co
- 4. Segel I.R., 2nd edition., 2004, Biochemical calculations, John Wiley and Sons
- 5. Irwin H. Segel, 2nd Edition, Biochemical Calculations, John Wiley & Sons

Program Name	BSc Microbio	logy	Semester	Fourth	
Course Title	Human Micro	obiome			
Course Code	MBL:304	OE-4T	No. of Theory Credits	3	
Contact hours	Lecture	42 Hrs	Duration of ESA/Exam	2Hours	
Contact nours	Practical		-		
Formative Asses	ssment Marks	40	Summative Assessment Marks 60		

Course Pre-requisite(s):

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Articulate a deeper understanding on biological complexities of human micro biome.
- 2. Understand broader goals of biological anthropology.
- 3. Compare and contrast the micro biome of different human body sites and impact human health promotion

Content	42 Hrs
Unit–I	14 Hrs
INTRODUCTION TO MICROBIOME	
Normal human microbiota and their role in health-gut microflora, skin microflora, microflora of	
reproductive and excretory system. Symbiotic and parasitic association.	
Unit -II	14 Hrs
MICROBIOMES AND HUMAN HEALTH	
Pre and post-natal Microbiome, Nutritional modulation of the gut microbiome for metabolic	
health -role of gut microbiomes in human obesity, human type 2 diabetes.	
Influence of microbiome in aging.	
Probiotics-Criteria for probiotics, Development of Probiotics for animal and human use; Pre	
and synbiotics. Functional foods-health claims and benefits, Development of functional	
foods.	
Unit -III	14 Hrs
CULTURING OF MICROBES FROM MICROBIOMES	
Culturing of organisms of interest from the microbiome: bacterial, fungal, and yeast.	
Study of the microbiome genome	
Microbiomes and diseases: Microbiome and disease risks: The gut microbiome and host	
immunity, bacteriocins and other antibacterials. Human microbiome research in nutrition	

Pedagogy

Summative assessment = 40 marks theory paper, End semester Exam duration of exam 2 hours					
Formative Assessment Occasion / type	Weightage in Marks				
Assignment	10				
Seminar	10				
Case studies	10				
Test	10				
Total	40 marks				

References

1 Jason A. Tetro, 2016. The Human Microbiome, Handbook DE Stech Publications inc,

2 Rebecca E. Hirsch, 2016. The Human Microbiome, Twenty First Century Books.

3 Julian R Marchesi, 2019. The Human Microbiota And Microbiome, CABI

4 Alanna Collen, 2016. 10% Human: How Your Body's Microbes Hold the Key to Health and Happiness,